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Abstract

The influences of actuator nonlinearities on actuator dynamics and the aeroelastic characteristics of a control fin were

investigated by using iterative V-g methods in subsonic flows; in addition, the doublet-hybrid method (DHM) was used

to calculate unsteady aerodynamic forces. The changes of actuator dynamics induced by nonlinearities, such as

backlash or freeplay, and the variations of flutter boundaries due to the changes of actuator dynamics were observed.

Results show that the aeroelastic characteristics can be significantly dependent on actuator dynamics. Thus, the

actuator nonlinearities may play an important role in the nonlinear aeroelastic characteristics of an aeroelastic system.

The present results also indicate that it is necessary to seriously consider the influence of actuator dynamics on the

flutter characteristics at the design stage of actuators to prevent aeroelastic instabilities of aircraft or missiles.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Actuator nonlinearities; Aeroelastic characteristics; Actuator dynamics

1. Introduction

Consideration of static and dynamic aeroelastic phenomena is a significant issue in flight vehicle design. The

corresponding unstable aeroelastic phenomena may cause the failure of flight vehicle structures or the decline of control

performance. Hence, it is necessary to predict aeroelastic characteristics accurately in order to avoid aeroelastic

instabilities during flight.

Recently, the control systems of wings have become more complex to improve flight performance. As actuators

become more advanced, the effects of actuator dynamics on the aeroelasticity of flight vehicles become more significant.

Aeroelastic analyses of flight vehicles are easily performed using an assumption of structural and aerodynamic linearity.

Nonlinear characteristics, particularly freeplay and backlash, and linear aeroelastic characteristics of flight vehicles or

missile systems sometimes differ significantly from each other (Wooston et al., 1957; Laurenson and Tron, 1980), and

aeroelastic behaviors that consider effects of an actuator on wing dynamics are considerably different from those that

consider the wing only (Yehelzkely and Karpel, 1996).
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Nomenclature

b transmission error

d size of freeplay in load links

ym rotational displacement of electric motor

yn rotational displacement of second gear

yL rotational displacement of load links

y1 rotational displacement of fist gear

FF modal matrix

bl size of backlash of gears

ci damping of ith gear

C̄ generalized damping matrix

Cm damping of electric motor

CL damping of load links

fflutter linear flutter frequency

Ji moment of inertia of ith gear

Jm moment of inertia of electric motor

JL moment of inertia of load links

k stiffness between second gear and load links

ki stiffness of ith gear

Ky linear static root stiffness

Km static stiffness of electric motor

KL static stiffness of load links

K̄ generalized stiffness matrix

M̄ generalized mass matrix

Ni ith gear reduction

N0i altering ith gear reduction

T torque induced by electric motor

TL transmission torque from second gear to

load links

T1 transmission torque from motor to first gear

Uflutter linear flutter velocity
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McIntosh et al. (1981) performed experimental and theoretical studies of nonlinear flutter for a typical section model

with hardening and softening spring along the hinge and plunge directions, and they observed limit-cycle and divergent

amplitude-sensitive instabilities. Yang and Zhao (1988) studied the limit-cycle oscillations (LCO) of a typical section

model with nonlinearity in the pitch direction subject to incompressible flow using the Theodorsen function. Lee (1986)

developed an iterative scheme for multiple nonlinearities using the describing function method and the structural

dynamics modification technique.

Lee and Tron (1989) carried out a flutter sensitivity study for a CF-18 aircraft with a wing-folding hinge and

investigated the flutter characteristics and effects on limit-cycle flutter for the various wing-folding angles.

Lee and Kim (1995) studied LCO and chaotic motion of a missile control surface with freeplay using a time-domain analysis.

Paek and Lee (1996) performed a flutter analysis for a launch vehicle control surface with control actuators and investigated the

effect of the sweep angle on the flutter characteristics of a wing with dynamic stiffness. Conner et al. (1997) performed

numerical and experimental studies on the nonlinear aeroelastic characteristics of a typical section wing with control surface

freeplay. Liu and Chan (2000) investigated the LCO phenomenon for a nonlinear aeroelastic system under unsteady

aerodynamics, and they showed that wind tunnel test results agreed well with predictions obtained both theoretically and

numerically. Radcliffe and Cesnik (2001a,b) performed theoretical and experiment tests for the multi-hinged wings and

checked the effect of nonlinearity on post-flutter flight speeds. Paek et al. (2002) studied the flutter characteristics of a

wraparound fin while considering rolling motion and aerodynamic nonlinearity. Bae et al. (2002) used frequency-domain and

time-domain analyses to study the subsonic nonlinear flutter characteristics of wings with a control surface. Librescu et al.

(2003) performed a study of the benign and catastrophic characters of the flutter instability boundary of 2-D lifting surfaces in a

supersonic flow field, and they studied the bifurcational behavior of an aeroelastic system near a flutter boundary using a

method based on the first Liapunov method. Patil and Hodges (2004) investigated the importance of aerodynamic and

structural geometrical nonlinearities in the aeroelastic behavior of high-aspect-ratio wings. Bae et al. (2004a) investigated the

nonlinear aeroelastic characteristics of a deployable missile control fin, and showed that the aeroelastic characteristics can

become more stable than in the case of linear aeroelasticity due to the nonlinearity of a deployable hinge. And Bae et al. (2004b)

studied the nonlinear aeroelasticity of an aircraft wing with freeplay and bilinear nonlinearity and they observed three different

types of LCOs over a wide range of airspeeds beyond the linear flutter boundary. Shearer and Cesnik (2007) studied a highly

flexible vehicle, the HALE aircraft, which has geometrical nonlinearity, and checked the importance of modeling of the

nonlinearity. Attar and Dowell (2005) proposed a reduced-order system ID approach to the modeling of nonlinear structural

behavior in aeroelasticity. Many studies have considered nonlinear flutter; in contrast, nonlinear flutter analyses that consider

the structural nonlinearity of an actuator have not yet been performed.

In this paper, the nonlinear aeroelastic characteristics of a missile fin with an actuator (shown in Fig. 1) are

investigated with consideration of actuator nonlinearities as well as the actuator dynamics. Actuator nonlinearities,

including backlash, freeplay, or transmission error, are present in the actuator, and the transfer function of the actuator

is obtained via a rational function type comprised of system coefficients. The finite element method (FEM) is used for

the free vibration analysis, and the doublet-hybrid method (DHM) (Ueda and Dowell, 1982), is used for the

computation of subsonic unsteady aerodynamic forces. The fictitious mass (FM) method (Karpel and Newman, 1975)

is used to reduce the computational effort.



ARTICLE IN PRESS

349.5 mm

174.9 mm

33
3.

9 
m

m

Actuator connect to here

Fig. 1. The geometry of the missile fin.
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2. Theoretical analysis

2.1. Actuator governing equation

Fig. 2 indicates the free-body diagram of the actuator, which consists of an electric motor, gears, and load links. The

governing equation of the actuator can be obtained using Newton’s method at each point. The equation of motion can

be represented as a combination of mass, damping, and stiffness of the motor at point A

Jm
€ym þ Cm

_ym þ Kmym ¼ T � T1. (1)

The governing equation of Gear 1 at point B can be written as

1

N1
J1
€y1 þ c1 _y1 � _yn

� �
þ k1 y1 � ynð Þ

n o
¼ T1, (2)

where

ym ¼ N1y1. (3)

Applying Eq. (3) to Eq. (2), the latter can be changed into

J1

€ym

N1
¼ N1T1 � c1

_ym

N1
� _yn

 !
� k1

ym

N1
� yn

� �
. (4)

The equation of motion at point C can be obtained as Eq. (5), and Eq. (2) can be represented as Eq. (6)

J2
€yn þ c1 _yn �

_ym

N1

 !
þ k1 yn �

ym

N1

� �
¼ �

TL

N2
, (5)

J2
€yn ¼ �c1 _yn �

_ym

N1

 !
� k1 yn �

ym

N1

� �
�

TL

N2
. (6)

There is transmission error b between Gear 3 and the load axis that can be written as

b ¼ y1 � yL ¼
yn

N2
� yL. (7)

The transmission torque can be represented as the product between stiffness and transmission error

TL ¼ kb. (8)
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Fig. 2. The free-body-diagram and backlash model of the gear system. (a) The free body diagram of gear systems and (b) backlash

model of the gear system.
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The equation of motion at point D can be obtained as

JL
€yL þ CL

_yL þ KLyL ¼ TL. (9)

Assuming that the moments of inertia of gears are negligibly small and solving Eqs. (1)–(9), the relationship among

ym, yn, and yL can be represented as

yn ¼
N2 JLs2 þ CLsþ KL

� �
k

þN2

� �
yL, (10)

ym ¼
N2 JLs2 þ CLsþ KL

� �
k

þN2 þ
N1 JLs2 þ CLsþ KL

� �
N2 c1sþ k1ð Þ

� �
yL. (11)

Actuators may include several structural nonlinearities, such as backlash among the gears, freeplay of the load links,

and transmission errors within the electric motor, gears, and load links. Such actuator nonlinearities may seriously

affect the dynamic characteristics of a given actuator. Solving Eqs. (1)–(7), the transfer function of the actuator with

transmission errors can be represented as

TðsÞ

yLðsÞ
¼ N1 Jms2 þ Cmsþ Km

� � 1

N2 k1 þ c1sð Þ
þ

1

k

� �
JLs2 þ CLsþ KL

� �
þN2

� 	
þ

JLs2 þ CLsþ KL

N1N2
. (12)

Freeplay and backlash nonlinearities of the actuator can be represented via a function between the nonlinear

restoring force and the displacement, and they can be written as

f backlash b; blð Þ ¼
0 for b



 

obl

k b� blð Þ for b


 

4bl:

(
(13a)
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f freeplay yL; dð Þ ¼
0 for yLj jod

KL yL � dð Þ for yLj j4d

(
(13b)

where bl and d are magnitudes of backlash and freeplay nonlinearities, respectively.

The equivalent stiffness of a nonlinear spring can be obtained using the general describing function method (Gelb and

Velde, 1968), and the describing function of Eq. (13) can be written as

cbacklash b; blð Þ ¼ 1�
2

p
sin�1

bl

b
þ

bl

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

bl

b

� �2
s2

4
3
5, (14a)

cfreeplay yL; dð Þ ¼ 1�
2

p
sin�1

d
yL

þ
d
yL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d
yL

� �2
s2

4
3
5. (14b)

The actuator is connected to the control fin, and the actuator operates as the boundary condition of the control fin.

Hence, changes in actuator dynamics can influence the aeroelastic characteristics of the control fin.

2.2. Aeroelastic equations

The aeroelastic equations of the missile fin with concentrated structural nonlinearity, such as freeplay and backlash,

can be written as

M€uþ C_uþ Kuðo; uÞu ¼ Fðt; u;_uÞ, (15)

where M, C and u are the mass matrix, damping matrix and displacement vector, respectively. In addition, Fðt; u;_uÞ is
the unsteady aerodynamic force and Ku(o,u) is the nonlinear stiffness matrix. The nonlinear stiffness matrix is divided

into linear and nonlinear terms, which can be written as

Kuðo; uÞu ¼ KðoÞuþ f ðo; uÞ, (16)

where K(o) is a dynamic stiffness matrix, and f(o,u) is the restoring force vector. In an aeroelastic system with structural

nonlinearity and dynamic stiffness, structural properties vary with the behavior of the system. Hence, the aeroelastic

results may be inaccurate if the constant modal coordinate of the nominal model is used to reduce the computational

time and memory. Also, it takes too much time to redefine the modal coordinates of the aeroelastic system as the

structural properties vary. In addition, it might be meaningless to perform an aeroelastic analysis on generalized modal

coordinates. For these reasons, the FM method is used to improve the accuracy and computational time while using

generalized modal coordinates.

The FM method, suggested by Karpel (1975), is used to couple several substructures. The FM is added to interface

coordinates between the actuator and the structure. The equation of motion-adding FM, MF, is rewritten as

MþMFð Þ€uþ C_uþ Ku ¼ Fðt; u;_uÞ. (17)

The eigenvector and eigenvalue matrices are obtained by solving the eigenvalue problem of Eq. (17). When the modal

matrix UF of the FM model is used, the structural displacement vector can be transformed into modal coordinates as

follows:

u ¼ UFg, (18)

where g is the displacement vector in modal coordinates. Then, the generalized aerodynamic forces can be written as

F ¼ UFF ¼ qUT
FQUFg ¼ qQ̄g, (19)

where q and Q̄ are the dynamic pressure and the generalized aeroelastic coefficient matrix, respectively. On the other

hand, the governing equation of the real structure induced by actuator nonlinearity and dynamics, DK(o,u), is written
as

M€uþ C_uþ Kþ DKð Þu ¼ Fðt; u;_uÞ. (20)

Therefore, Eq. (20) can be rewritten as

M̄�UT
FMFUF

� �
€gþ C _gþ K̄þUT

FDK o; uð ÞUF

� �
g ¼ qQ̄g�UT

F f ðo; uÞ. (21)
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Although DK(o,u) has various values, UF is consistently used to construct the generalized coordinate. The

aerodynamics need not be calculated again to perform the free vibration analysis when structural changes occur. The

FM method is an efficient and simple method to perform the aeroelastic analysis for the nonlinear structure.
3. Results and discussion

3.1. Actuator and control fin details

The geometric shape of a control fin, which has been determined for aeroelastic analyses, consists of upper and lower

fins and can be deployed to reduce storage space, as shown in Fig. 1. The upper fin is made of aluminum alloy; the lower

fin is made of steel. The upper fin is folded on mounting, and then unfolded after launching. Structural nonlinearity at

the joint between the upper and lower fin may also affect the aeroelastic characteristics, and the ratio between the root

rotation stiffness and the folding stiffness is significant for determining the flutter boundary (Bae et al., 2004a).

However, in this study, only the effects of the structural nonlinearities of an actuator on the flutter boundaries were

investigated, and thus the structural nonlinearities of a control fin were excluded.

The control fin is connected to an actuator, which consists of an electric motor, gears, and load links. The electric

motor used in this study has static friction of 0.0028Nm and an armature resistance of 9.52O; additionally, the motor

torque constant, back-emf, and motor inertia are 0.039Nm/A, 0.055 V/rads, and 4.5� 10�6 kgm2, respectively. The

system parameters of the electric motor are listed in Table 1. The first and second reductions of the gear trains are 5.95
Table 1

Motor parameters of LC38RM-009-200 made by Copal Co

Static friction Fm 0.0028Nm

Armature resistance Rm 9.52O
Motor torque constant Kt 0.039Nm/A

Back_emf Kb 0.055V/rad/s

Motor inertia Jm 4.5� 10�6 kgm2

Table 2

Gear train’s mechanical parameters

Torsional stiffness of motor axis k1 74.3Nm/rad

Torsional stiffness of load axis k2 6120Nm/rad

Moment of inertia of motor Jm 4.5� 10�6 kgm2

Total moment of inertia of load JL 0.0833 kgm2

First reduction gear ratio N1 5.95

Second reduction gear ratio N2 8.69

Table 3

Natural frequencies and mode shape of the control fin using fictitious mass method

1st mode 3rd mode

Folding mode: 48.12Hz 1st bending mode: 304.6Hz

2nd mode 4th mode

Pitching mode: 159.0Hz 1st torsion mode: 392.7Hz
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and 8.69. The total inertia moment of the load axis is 0.0833 kgm2, while the torsional stiffnesses of the motor and load

axes are 74.3Nm/rad and 6.12 kNm/rad, respectively. The transfer functions of the actuator are represented with a

combination of system parameters for the electric motor and gear trains. The mechanical parameters of the gear trains

are listed in Table 2.

3.2. Nonlinear aeroelastic analysis

Aeroelastic analyses were performed for a control fin with an actuator (see Fig. 1) in linear and nonlinear missile

systems using both a fictitious method and an iterative V-g method. Validations of the fictitious method and iterative V-

g method used for the aeroelastic analyses were confirmed in previous studies (Bae et al., 2004a; Paek and Lee, 1996).
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Fig. 3. Flutter analysis results of the control fin with the actuator using the iterative V-g method. (a) V-g graph and (b) V-F graph.
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In the present study, the FEM was used for structural modeling of the control fin. Eight-node solid elements and bar

elements were used to model the lower/upper fins and the hinge structures, respectively. Multipoint constraints were

used to connect the lower/upper fins with the bar elements. A 1-D spring element for a root rotational spring was used,

and point mass elements were used for the FM method. The root rotational spring indicated the boundary condition

between the missile fin and the actuator. The free vibration analysis was performed using the FM method, and the first

four natural frequencies and mode shapes are listed in Table 3. In addition, the generalized mass and stiffness matrices

and the mode shape of the free vibration analysis were used for the aeroelastic analyses. The Mach number and air

density used in the analyses were 0.7 and 1.23 kg/m3, respectively, and the subsonic unsteady aerodynamic forces were

computed using DHM.

Flutter without actuator nonlinearity occurred as coalescence flutter between the folding and the pitching modes, as

shown in Fig. 3. As the velocity increased, the pitching mode frequency decreased and the folding frequency increased.

The two modes approached each other and then merged at the flutter point. The second mode was the pitching mode at

the joints between the control fin and the actuator. In addition, the actuator nonlinearities affected the dynamic stiffness

and the second mode frequency, and the second mode was the flutter mode that merged with the first mode. Hence, a

change of the second mode frequency induced by the actuator nonlinearity may affect the flutter boundary. Flutter

velocity and frequency without actuator nonlinearity were used as the reference flutter velocity, Uref, and the reference

flutter frequency, oref.

For the case when the backlash nonlinearity is present in gears, Fig. 4 shows the changes of actuator dynamics,

including the dynamic stiffness and the phase, according to the frequency ratio, which is normalized by the reference

frequency, oref. The damping ratio of the load links, z, was assumed to be 0.1, and the displacement was

nondimensionalized by the magnitude of the freeplay. The ratios between the magnitudes of backlash and freeplay are

assumed as bl : d ¼ 30 : 1. The location of the under-peak point, the minimum, decreased as the effects of backlash

nonlinearity increased. (The effect of nonlinearity is larger when the nondimensional displacement, yL/d, is closer to 1;

additionally, the displacement of the gear, yn, is obtained from Eq. (5).) The under-peak point, when the

nondimensional displacement was 1.1, dropped to about 15% because of backlash nonlinearity, as compared to that

without backlash.

Fig. 5 indicates that actuator dynamics changed according to the freeplay nonlinearity of the load links. The

magnitude of dynamic stiffness for 1.1 of the nondimensional displacement decreased by 50% due to the influence of

freeplay nonlinearity, compared to that without freeplay. However, the under-peak point did not change, in contrast to

the previous case. Fig. 6 shows variations of actuator dynamics when the backlash nonlinearity and the freeplay

nonlinearity were coupled. The magnitude and under-peak points decreased considerably as the effects of the actuator

nonlinearity strengthened.
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Fig. 4. Effects of backlash nonlinearity on the actuator dynamic characteristics. (z ¼ 0.1).
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Fig. 6. Effects of both backlash and freeplay nonlinearity on the actuator dynamic characteristics. (z ¼ 0.1).
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Fig. 7 shows that the flutter velocity ratio varied according to nondimensional displacement when the actuator

nonlinearities are considered. In the case of backlash nonlinearity among the gears, the flutter speeds vary little as

nondimensional displacements are changed, near y/d ¼ 1. However, the flutter speed does not change according to

nondimensional amplitudes of the oscillations, and converges to the reference flutter velocity in most nondimensional

amplitude regions. The under-peak point without backlash nonlinearity, as shown in Fig. 4, was located above 5

(frequency ratio), and variations of dynamic stiffness were negligibly small near the reference frequency, whose



ARTICLE IN PRESS

0 4 6 8 10
0.0

0.5

1.0

1.5

2.0

F
lu

tt
e
r 

V
e
lo

c
it
y
 R

a
ti
o
 (

U
/U

re
f)

Nondimensional Amplitude of Oscillation (θ
L
/δ)

Flutter speed with backlash (ζ = 0.1)
 Flutter speed with freeplay (ζ = 0.1)
 Flutter speed with both freeplay 

and backlash (ζ = 0.1)

2

Fig. 7. Effects of actuator nonlinearities on flutter boundaries.

W.-H. Shin et al. / Journal of Fluids and Structures 23 (2007) 1093–11051102
frequency ratio is 1. Hence, the results show that the effects of backlash nonlinearity on the flutter boundary may be

negligible.

The flutter speeds, including the freeplay at load links, dropped as much as 60% in contrast to the previous case,

wherein the nondimensional displacement approached 1. In addition, the flutter velocity ratio converged to 1 (which is

the result obtained without actuator nonlinearities) as the nondimensional displacement increased. As shown in Fig. 5,

the dynamic stiffness was reduced due to freeplay nonlinearity near the reference frequency, o/oref ¼ 1, and then the

flutter speed dropped considerably because of the decrements of dynamic stiffness. When the backlash and freeplay

nonlinearities were coupled, the results were similar to the distribution of the flutter speed, including freeplay

nonlinearity only. The effects of backlash nonlinearity were negligibly small near the reference frequency, where the

freeplay nonlinearity had the main effect on the aeroelastic characteristics.

To investigate the effect of under-peak point locations on the flutter boundaries, the first and second reductions of

gear trains were changed to thrice and twice, respectively. Figs. 8–10 show the changes of actuator dynamics according

to the actuator nonlinearities after altering the first and second reductions. The under-peak point of dynamic stiffness

moved to the near reference frequency, and the phase variation was small compared to the previous model. As shown in

Fig. 8, the under-peak point decreased little according to nondimensional displacements, but the decrements of the

under-peak point, induced by backlash nonlinearity, were negligible. Fig. 9 shows the effects of freeplay nonlinearity on

actuator dynamics when the changed gear reductions are used. The magnitude of dynamic stiffness with 1.1 of the

nondimensional displacement dropped to 50% because of the effects of freeplay nonlinearity, as compared to either

with or without freeplay. Fig. 10 indicates that actuator dynamics, including both backlash and freeplay nonlinearities,

were changed and the results were similar to those which considered only the freeplay nonlinearity. As the gear train

reductions were altered, the influence of backlash nonlinearity on the actuator dynamics was weaker than when the

original reductions were used.

Fig. 11 indicates that the flutter boundaries vary according to the actuator nonlinearities when the gear reductions of

the actuator are changed in order to make the dynamic stiffness zero near the reference flutter frequency. As shown in

Fig. 7, the flutter speeds which alter the gear reduction, have quite a different distribution from those using the original

gear reductions. The flutter boundaries are decremented by 0.25 and observed in the regions where the nondimensional

amplitudes of the oscillation are bigger than 2, including the backlash or freeplay nonlinearities, as compared with the

reference flutter speed.

In the short region where the nondimensional amplitudes of the oscillation have a magnitude near 1, the nonlinear

flutter occurs over the reference velocity; in addition, these phenomena are not observed when using the original gear

reductions. In contrast to the results using the original gear reduction in Fig. 7, the flutter boundary with backlash only

is significantly changed according to the nondimensional amplitude. In addition, the flutter boundaries, including both

backlash and freeplay nonlinearities, differ significantly from those which consider freeplay only, since the backlash and

the freeplay are coupled.

The nondimensional amplitudes, where flutter occurs above the reference velocity, are located near 1 when the

backlash and freeplay nonlinearities are considered independently; in contrast, those regions increase up to 2 with

coupled backlash and freeplay nonlinearities. Fig. 11 indicates that the effects of the actuator nonlinearity can increase
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Fig. 8. Effects of backlash nonlinearity on the actuator dynamic characteristics using changed gear reductions.
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aeroelastic boundaries in a specific region when the zero of the actuator is located near the flutter frequency. These

results show that the actuator nonlinearity may affect the flutter boundary significantly, and that the flutter

performance can change dramatically with the actuator dynamics, such as phase, peak and under-peak frequencies of

the dynamic stiffness. Hence, the influences of actuator nonlinearities on flutter characteristics should be seriously

considered when designing missile and aircraft actuators.
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4. Concluding remarks

In this study, the influence of actuator nonlinearities on the aeroelastic characteristics of a control fin and actuator

dynamics has been investigated by using iterative V-g methods in subsonic flows, and the unsteady aerodynamic force

coefficients have been calculated by using the DHM based on a panel method. The actuator dynamics changes induced

by actuator nonlinearities and gear reductions were investigated. The results show both that the freeplay can affect the
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magnitude of dynamic stiffness and that the backlash may influence the poles or zeros of the dynamic stiffness. LCOs

were observed both below and above the linear flutter speed, and the LCO characteristics of the aeroelastic system are

significantly dependent on actuator nonlinearity as well as gear reductions. The aeroelastic boundary may decrease due

to the actuator nonlinearities as compared to a linear case. In addition, the flutter boundary may improve, induced by

the effects of the phase change when flutter occurs near the frequency of an actuator pole or zero. Thus, the actuator

nonlinearities may play a significant role in the nonlinear flutter characteristics of an aeroelastic system. The results also

indicate that it is necessary to seriously consider the actuator dynamics at the design stage in order to prevent aeroelastic

instabilities of aircraft or missiles.
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